高一數(shù)學(xué)教案:《直線與平面垂直的判定》優(yōu)秀教學(xué)設(shè)計(jì)(3)
來(lái)源:網(wǎng)絡(luò)整理 2018-11-25 21:00:56
(二)、探究發(fā)現(xiàn)直線與平面垂直的判定定理
1、觀察猜想
思考:我們?cè)撊绾螜z驗(yàn)學(xué)校廣場(chǎng)上的旗桿是否與地面垂直?
雖然可以根據(jù)定義判定直線與平面垂直,但這種方法實(shí)際上難以實(shí)施。有沒有比較方便可行的方法來(lái)判斷直線和平面垂直呢?
問題4、觀察跨欄、簡(jiǎn)易木架等實(shí)物,你能猜想出判斷一條直線與一個(gè)平面垂直的方法嗎?
設(shè)計(jì)意圖:通過問題思考與實(shí)例分析,尋找具有可操作性的判定方法,體驗(yàn)有限與無(wú)限之間的辯證關(guān)系。
師生活動(dòng):引導(dǎo)學(xué)生觀察思考,給出猜想:一條直線與一個(gè)平面內(nèi)兩相交直線都垂直,則該直線與此平面垂直。
2、操作確認(rèn)
問題5:如圖4,請(qǐng)同學(xué)們拿出準(zhǔn)備好的一塊(任意)三角形的紙片,我們一起來(lái)做一個(gè)實(shí)驗(yàn):過△ABC的頂點(diǎn)A翻折紙片,得到折痕AD,將翻折后的紙片豎起放置在桌面上,(BD、DC與桌面接觸).觀察并思考:
(1)折痕AD與桌面垂直嗎?如何翻折才能使折痕AD與桌面所在的平面垂直?
。2)由折痕AD⊥BC,翻折之后垂直關(guān)系,即AD⊥CD,AD⊥BD發(fā)生變化嗎?由此你能得到什么結(jié)論?
設(shè)計(jì)意圖:通過實(shí)驗(yàn),引導(dǎo)學(xué)生獨(dú)立發(fā)現(xiàn)直線與平面垂直的條件,培養(yǎng)學(xué)生的動(dòng)手操作能力和幾何直觀能力。
師生活動(dòng):在折紙?jiān)囼?yàn)中,學(xué)生會(huì)出現(xiàn)“垂直”與“不垂直”兩種情況,引導(dǎo)學(xué)生進(jìn)行交流,根據(jù)直線與平面垂直的定義分析“不垂直”的原因。學(xué)生再次折紙,進(jìn)而探究直線與平面垂直的條件,經(jīng)過討論交流,使學(xué)生發(fā)現(xiàn)只要保證折痕AD是BC邊上的高,即AD⊥BC,翻折后折痕AD就與桌面垂直,再利用多媒體演示翻折過程,增強(qiáng)幾何直觀性。
3、合情推理
問題6:根據(jù)上面的試驗(yàn),結(jié)合兩條相交直線確定一個(gè)平面的事實(shí),你能給出直線與平面垂直的判定方法嗎?
設(shè)計(jì)意圖:引導(dǎo)學(xué)生根據(jù)直觀感知及已有知識(shí)經(jīng)驗(yàn),進(jìn)行合情推理,獲得判定定理。
師生活動(dòng):教師引導(dǎo)學(xué)生回憶出“兩條相交直線確定一個(gè)平面”,以及直觀過程中獲得的感知,將“與平面內(nèi)所有直線垂直”逐步歸結(jié)到“與平面內(nèi)兩條相交直線垂直”,進(jìn)而歸納出直線與平面垂直的判定定理。同時(shí)指出要判斷一條直線與一個(gè)平面是否垂直,取決于在這個(gè)平面內(nèi)能否找到兩條相交直線和已知直線垂直,至于這兩條相交直線是否和已知直線有公共點(diǎn)是無(wú)關(guān)緊要的.定理充分體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”相互轉(zhuǎn)化的數(shù)學(xué)思想。
定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。
用符號(hào)語(yǔ)言表示為:
相關(guān)推薦
- 高一數(shù)學(xué)教案:《直線與平面垂直的判定
- 高一數(shù)學(xué)教案:《空間幾何體的直觀圖》
- 高一數(shù)學(xué)教案:《球的體積和表面積》教
- 高一數(shù)學(xué)教案:《直線的一般式方程》教
- 高一數(shù)學(xué)教案:《直線的點(diǎn)斜式方程》教
- 高一數(shù)學(xué)教案:《方程的根與函數(shù)的零點(diǎn)
- 高一數(shù)學(xué)教案:《方程的根與函數(shù)的零點(diǎn)
- 高一數(shù)學(xué)教案:《用二分法求方程的近似
- 高一數(shù)學(xué)教案:《對(duì)數(shù)函數(shù)及其性質(zhì)》教
- 高一數(shù)學(xué)教案:《基于APOS理論的函數(shù)概
高考院校庫(kù)(挑大學(xué)·選專業(yè),一步到位!)
高校分?jǐn)?shù)線
專業(yè)分?jǐn)?shù)線
- 日期查詢