Image Modal
全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考資源網(wǎng) > 高中教案 > 高一數(shù)學教案 > 高一數(shù)學教案:《方程的根與函數(shù)的零點》教學設(shè)計

電子課本

高考真題

高考模擬題

高中試卷

高中課件

高中教案

高一數(shù)學教案:《方程的根與函數(shù)的零點》教學設(shè)計

來源:網(wǎng)絡整理 2018-11-25 19:40:16

高一數(shù)學教案:《方程的根與函數(shù)的零點》教學設(shè)計

  一、內(nèi)容和內(nèi)容解析

  本節(jié)課是在學生學習了《基本初等函數(shù)(Ⅰ)》的基礎(chǔ)上,學習函數(shù)與方程的第一課時,本節(jié)課中通過對二次函數(shù)圖象的繪制、分析,得到零點的概念,從而進一步探索函數(shù)零點存在性的判定,這些活動就是想讓學生在了解初等函數(shù)的基礎(chǔ)上,利用計算機描繪函數(shù)的圖象,通過對函數(shù)與方程的探究,對函數(shù)有進一步的認識,解決方程根的存在性問題,為下一節(jié)《用二分法求方程的近似解》做準備.

  從教材編寫的順序來看,《方程的根與函數(shù)的零點》是必修1第三章《函數(shù)的應用》一章的開始,其目的是使學生學會用二分法求方程近似解的方法,從中體會函數(shù)與方程之間的聯(lián)系.利用函數(shù)模型解決問題,作為一條主線貫穿了全章的始終,而方程的根與函數(shù)的零點的關(guān)系、用二分法求方程的近似解,是在建立和運用函數(shù)模型的大背景下展開的.方程的根與函數(shù)的零點的關(guān)系、用二分法求方程的近似解中均蘊涵了“函數(shù)與方程的思想”和“數(shù)形結(jié)合的思想”,建立和運用函數(shù)模型中蘊含的“數(shù)學建模思想”,是本章滲透的主要數(shù)學思想.

  從知識的應用價值來看,通過在函數(shù)與方程的聯(lián)系中體驗數(shù)學中的轉(zhuǎn)化思想的意義和價值,體驗函數(shù)是描述宏觀世界變化規(guī)律的基本數(shù)學模型,體會符號化、模型化的思想,體驗從系統(tǒng)的角度去思考局部問題的思想.

  基于上述分析,確定本節(jié)的教學重點是:了解函數(shù)零點的概念,體會方程的根與函數(shù)零點之間的聯(lián)系,掌握函數(shù)零點存在性的判斷.

  二、目標和目標解析

  1.通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點與相應方程實數(shù)根之間的關(guān)系,

  2.零點知識是陳述性知識,關(guān)鍵不在于學生提出這個概念。而是理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。

  3.通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學生理解動與靜的辨證關(guān)系.掌握函數(shù)零點存在性的判斷.

  4.在函數(shù)與方程的聯(lián)系中體驗數(shù)形結(jié)合思想和轉(zhuǎn)化思想的意義和價值,發(fā)展學生對變量數(shù)學的認識,體會函數(shù)知識的核心作用.

  三、教學問題診斷分析

  1.零點概念的認識.零點的概念是在分析了眾多圖象的基礎(chǔ)上,由圖象與軸的位置關(guān)系得到的一個形象的概念,學生可能會設(shè)法畫出圖象找到所有任意函數(shù)的可能存在的所有零點,但是并不是所有函數(shù)的圖象都能具體的描繪出,所以在概念的接受上有一點的障礙.

  2.零點存在性的判斷.正因為f(a)·f(b)<0且圖象在區(qū)間[a,b]上連續(xù)不斷,是函數(shù)f(x)在區(qū)間[a,b]上有零點的充分而非必要條件,容易引起思維的混亂就是很自然的事了.

  3.零點(或零點個數(shù))的確定.學生會作二次函數(shù)的圖象,但是要作出一般的函數(shù)圖象(或圖象的交點)就比較困難,而在這一節(jié)課最重要的恰恰就是利用函數(shù)圖象來研究函數(shù)的零點問題.這樣就在零點(或零點個數(shù))的確定上給學生帶來一定的困難.

  基于上述分析,確定本節(jié)課的教學難點是:準確認識零點的概念,在合情推理中讓學生體會到判定定理的充分非必要性,能利用適當?shù)姆椒ㄅ袛嗔泓c的存在或確定零點.

  四、教學支持條件分析

  考慮到學生的知識水平和理解能力,教師可借助計算機工具和構(gòu)建現(xiàn)實生活中的模型,從激勵學生探究入手,講練結(jié)合,直觀演示能使教學更富趣味性和生動性.

  通過讓學生觀察、討論、辨析、畫圖,親身實踐,在函數(shù)與方程的聯(lián)系中體驗數(shù)形結(jié)合思想、轉(zhuǎn)化思想的意義和價值,發(fā)展學生對變量數(shù)學的認識,體會函數(shù)知識的核心作用.

 

收藏

高考院校庫(挑大學·選專業(yè),一步到位。

高校分數(shù)線

專業(yè)分數(shù)線

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網(wǎng)版權(quán)所有 Copyright © 2005-2022 m.giftsz.cn . All Rights Reserved

知識商店