全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考總復(fù)習(xí) > 高考知識點 > 高考語文知識點 > 蜂窩猜想

蜂窩猜想

來源:網(wǎng)絡(luò)來源 2009-08-29 22:25:44

  加拿大科學(xué)記者德富林在《環(huán)球郵報》上撰文稱,經(jīng)過1600年努力,數(shù)學(xué)家終于證明蜜蜂是世界上工作效率最高的建筑者。

  四世紀(jì)古希臘數(shù)學(xué)家佩波斯提出,蜂窩的優(yōu)美形狀,是自然界最有效勞動的代表。他猜想,人們所見到的、截面呈六邊形的蜂窩,是蜜蜂采用最少量的蜂蠟建造成的。他的這一猜想稱為"蜂窩猜想",但這一猜想一直沒有人能證明。

  美密執(zhí)安大學(xué)數(shù)學(xué)家黑爾宣稱,他已破解這一猜想。蜂窩是一座十分精密的建筑工程。蜜蜂建巢時,青壯年工蜂負(fù)責(zé)分泌片狀新鮮蜂蠟,每片只有針頭大校而另一些工蜂則負(fù)責(zé)將這些蜂蠟仔細(xì)擺放到一定的位置,以形成豎直六面柱體。每一面蜂蠟隔墻厚度及誤差都非常小。6面隔墻寬度完全相同,墻之間的角度正好120度,形成一個完美的幾何圖形。人們一直疑問,蜜蜂為什么不讓其巢室呈三角形、正方形或其他形狀呢?隔墻為什么呈平面,而不是呈曲面呢?雖然蜂窩是一個三維體建筑,但每一個蜂巢都是六面柱體,而蜂蠟墻的總面積僅與蜂巢的截面有關(guān)。由此引出一個數(shù)學(xué)問題,即尋找面積最大、周長最小的平面圖形。

  1943年,匈牙利數(shù)學(xué)家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。1943年,匈牙利數(shù)學(xué)家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。但如果多邊形的邊是曲線時,會發(fā)生什么情況呢?陶斯認(rèn)為,正六邊形與其他任何形狀的圖形相比,它的周長最小,但他不能證明這一點。而黑爾在考慮了周邊是曲線時,無論是曲線向外突,還是向內(nèi)凹,都證明了由許多正六邊形組成的圖形周長最校他已將19頁的證明過程放在因特網(wǎng)上,許多專家都已看到了這一證明,認(rèn)為黑爾的證明是正確的。

 

收藏

相關(guān)推薦

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網(wǎng)版權(quán)所有 Copyright © 2005-2022 m.giftsz.cn . All Rights Reserved