高三數(shù)學(xué)教案:三角函數(shù)八
來(lái)源:網(wǎng)絡(luò)整理 2024-12-08 20:58:21
高三這年,其重要性,是不言而喻的。高考網(wǎng)陸續(xù)的整理了一些全國(guó)各省市優(yōu)秀教案供廣大考生參考。
[教材分析]:
反三角函數(shù)的重點(diǎn)是概念,關(guān)鍵是反三角函數(shù)與三角函數(shù)之間的聯(lián)系與區(qū)別。內(nèi)容上,自然是定義和函數(shù)性質(zhì)、圖象;教學(xué)方法上,著重強(qiáng)調(diào)類比和比較。
(1)立足課本、抓好基礎(chǔ)
現(xiàn)在高考非常重視三角函數(shù)圖像與性質(zhì)等基礎(chǔ)知識(shí)的考查,所以在學(xué)習(xí)中首先要打好基礎(chǔ)。
(2)三角函數(shù)的定義一定要清楚
我們?cè)趯W(xué)習(xí)三角函數(shù)時(shí),老師就會(huì)強(qiáng)調(diào)我們要把角放在平面直角坐標(biāo)系中去討論。角的頂點(diǎn)放在坐標(biāo)原點(diǎn),始邊放在X的軸的正半軸上,這樣再?gòu)?qiáng)調(diào)六種三角函數(shù)只與三個(gè)量有關(guān):即角的終邊上任一點(diǎn)的橫坐標(biāo)x、縱坐標(biāo)y以及這一點(diǎn)到原點(diǎn)的距離r中取兩個(gè)量組成的比值,這里得強(qiáng)調(diào)一下,對(duì)于任意一個(gè)α一經(jīng)確定,它所對(duì)的.每一個(gè)比值是確定的,也就說(shuō)是它們之間滿足函數(shù)關(guān)系。并且三者的關(guān)系是,x2+y2=r2,x,y可以任意取值,r只能取正數(shù)。
(3)同角的三角函數(shù)關(guān)系
同角的三角函數(shù)關(guān)系可以分為平方關(guān)系:sin2α+cos2α=1、tan2α+1=sec2α、cotα2+1=csc2α,倒數(shù)關(guān)系:tanαcotα=1,商的關(guān)系:tanα=sinα/cosα等等,對(duì)于同角的三角函數(shù),直接用三角函數(shù)的定義證明比較容易,記憶也比較方便,相關(guān)角的三角函數(shù)的關(guān)系可以分為終邊相同的角、終邊關(guān)于x軸對(duì)稱的`角、終邊關(guān)于直線y=x對(duì)稱的角、終邊關(guān)于y軸對(duì)稱的角、終邊關(guān)于原點(diǎn)對(duì)稱的角五種關(guān)系。
(4)加強(qiáng)三角函數(shù)應(yīng)用意識(shí)
三角函數(shù)產(chǎn)生于生產(chǎn)實(shí)踐,也被廣泛應(yīng)用與實(shí)踐,因此,應(yīng)該培養(yǎng)我們對(duì)三角函數(shù)的應(yīng)用能力。
如何學(xué)好高中三角函數(shù)的方法就是以上的四點(diǎn),在這四點(diǎn)的基礎(chǔ)上大家可以尋找最適合自己的點(diǎn)側(cè)重去運(yùn)用。
1、教學(xué)目標(biāo)
、:使學(xué)生理解直角三角形中五個(gè)元素的關(guān)系,會(huì)運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形
、:通過(guò)綜合運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力. ⑶:滲透數(shù)形結(jié)合的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣.
2、學(xué)情分析
學(xué)生在具備了解直角三角形的基本性質(zhì)后再對(duì)所學(xué)知識(shí)進(jìn)行整合后利用才學(xué)習(xí)直角三角形邊角關(guān)系來(lái)解直角三角形。所以以舊代新學(xué)生易懂能理解。
3、重點(diǎn)難點(diǎn)
重點(diǎn):直角三角形的解法
難點(diǎn):三角函數(shù)在解直角三角形中的靈活運(yùn)用以實(shí)例引入,解決重難點(diǎn)。
4、教學(xué)過(guò)程
4.1第一學(xué)時(shí)教學(xué)活動(dòng)活動(dòng)1導(dǎo)入
一、復(fù)習(xí)舊知,引入新課
一、復(fù)習(xí)舊知,引入新課
1.在三角形中共有幾個(gè)元素? 2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B這五個(gè)元素間有哪些等量關(guān)系呢?
答:(1)、三邊之間關(guān)系:a2 +b2 =c2 (勾股定理) (2)、銳角之間關(guān)系:∠A+∠B=90° (3)、邊角之間關(guān)系
以上三點(diǎn)正是解的依據(jù).
3、如果知道直角三角形2個(gè)元素,能把剩下三個(gè)元素求出來(lái)嗎?經(jīng)過(guò)討論得出解直角三角形的概念。
復(fù)習(xí)直角三角形的相關(guān)知識(shí),以問(wèn)題引入新課
注重學(xué)生的參與,這個(gè)過(guò)程一定要學(xué)生自己思考回答,不能讓老師總結(jié)得結(jié)論。
PPT,使學(xué)生動(dòng)態(tài)的復(fù)習(xí)舊知
活動(dòng)2講授
二、例題分析教師點(diǎn)撥
例1在△ABC中,∠C為直角,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,且b=,a=,解這個(gè)直角三角形.例2在Rt△ABC中,∠B =35o,b=20,解這個(gè)直角三角形
活動(dòng)3練習(xí)
三、課堂練習(xí)學(xué)生展示
完成課本91頁(yè)練習(xí)
1、Rt△ABC中,若sinA= ,AB=10,那么BC=XXXXX,tanB=XXXXXX.
2、在Rt△ABC中,∠C=90°,a=,c=,解這個(gè)直角三角形.
3、如圖,在△ABC中,∠C=90°,sinA= AB=15,求△ABC的周長(zhǎng)和tanA的值
4、在Rt△ABC中,∠C=90°,∠B=72°,c=14,解這個(gè)直角三角形(結(jié)果保留三位小數(shù)).
四、課堂小結(jié)
1)、邊角之間關(guān)系2)、三邊之間關(guān)系
3)、銳角之間關(guān)系∠A+∠B=90°.
4)、“已知一邊一角,如何解直角三角形?”
活動(dòng)5作業(yè)
五、作業(yè)設(shè)置
課本第96頁(yè)習(xí)題28.2復(fù)習(xí)鞏固第1題、第2題.
相關(guān)推薦:
高三數(shù)學(xué)一輪復(fù)習(xí)教案:《集合及其基本運(yùn)算》
最新高考資訊、高考政策、考前準(zhǔn)備、志愿填報(bào)、錄取分?jǐn)?shù)線等
高考時(shí)間線的全部重要節(jié)點(diǎn)
盡在"高考網(wǎng)"微信公眾號(hào)
相關(guān)推薦
高考院校庫(kù)(挑大學(xué)·選專業(yè),一步到位。
高校分?jǐn)?shù)線
專業(yè)分?jǐn)?shù)線
- 日期查詢