全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高考總復習 > 高考數學復習方法 > 高中數學重點知識全在這個順口溜里,輕松掌握!

高中數學重點知識全在這個順口溜里,輕松掌握!

2018-12-03 15:52:36學科網

  高中的數學學習主要目的是訓練學生的思維能力!對于很多數學成績差的學生來說,學習數學就是一種折磨。其實,數學在高中的科目中并不是最難的,只要找到正確的學習方法,學習起來就會比較輕松。

  今天,小編給大家分享一位數學名師總結的基礎知識順口溜分享給大家,包含了整個高中數學的知識點,運用口訣的方法幫助學生進行記憶。

  數學思想方法總結

  中學數學一線牽,代數幾何兩珠連;

  三個基本記心間,四種能力非等閑。

  常規(guī)五法天天練,策略六項時時變,

  精研數學七思想,誘思導學樂無邊。

  一線:函數一條主線(貫穿教材始終)

  二珠:代數、幾何珠聯(lián)璧合(注重知識交匯)

  三基:方法(熟)知識(牢) 技能(巧)

  四能力:概念運算(準確)、邏輯推理(嚴謹)、空間想象(豐富)、分解問題(靈活)

  五法:換元法、配方法、待定系數法、分析法、歸納法。

  六策略:以簡馭繁,正難則反,以退為進,化異為同,移花接木,以靜思動。

  七思想:函數方程最重要,分類整合常用到,

  數形結合千般好,化歸轉化離不了;

  有限自將無限描,或然終被必然表,

  特殊一般多辨證,知識交匯步步高。

  數學知識方法口訣

  集合與函數

  內容子交并補集,還有冪指對函數。

  性質奇偶與增減,觀察圖象最明顯。

  復合函數式出現(xiàn),性質乘法法則辨,

  若要詳細證明它,還須將那定義抓。

  指數與對數函數,兩者互為反函數。

  底數非1的正數,1兩邊增減變故。

  函數定義域好求。分母不能等于0,

  偶次方根須非負,零和負數無對數;

  正切函數角不直,余切函數角不平;

  其余函數實數集,多種情況求交集。

  兩個互為反函數,單調性質都相同;

  圖象互為軸對稱,Y=X是對稱軸;

  求解非常有規(guī)律,反解換元定義域;

  反函數的定義域,原來函數的值域。

  冪函數性質易記,指數化既約分數;

  函數性質看指數,奇母奇子奇函數,

  奇母偶子偶函數,偶母非奇偶函數;

  圖象第一象限內,函數增減看正負。

  三角函數

  三角函數是函數,象限符號坐標注。

  函數圖象單位圓,周期奇偶增減現(xiàn)。

  同角關系很重要,化簡證明都需要。

  正六邊形頂點處,從上到下弦切割;

  中心記上數字1,連結頂點三角形;

  向下三角平方和,倒數關系是對角,

  頂點任意一函數,等于后面兩根除。

  誘導公式就是好,負化正后大化小,

  變成稅角好查表,化簡證明少不了。

  二的一半整數倍,奇數化余偶不變,

  將其后者視銳角,符號原來函數判。

  兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。

  和差化積須同名,互余角度變名稱。

  計算證明角先行,注意結構函數名,

  保持基本量不變,繁難向著簡易變。

  逆反原則作指導,升冪降次和差積。

  條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。

  公式順用和逆用,變形運用加巧用;

  1加余弦想余弦,1 減余弦想正弦,

  冪升一次角減半,升冪降次它為范;

  三角函數反函數,實質就是求角度,

  先求三角函數值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,

  簡單三角的方程,化為最簡求解集;

  不等式

  解不等式的途徑,利用函數的性質。

  對指無理不等式,化為有理不等式。

  高次向著低次代,步步轉化要等價。

  數形之間互轉化,幫助解答作用大。

  證不等式的方法,實數性質威力大。

  求差與0比大小,作商和1爭高下。

  直接困難分析好,思路清晰綜合法。

  非負常用基本式,正面難則反證法。

  還有重要不等式,以及數學歸納法。

  圖形函數來幫助,畫圖建模構造法。

  數列

  等差等比兩數列,通項公式N項和。

  兩個有限求極限,四則運算順序換。

  數列問題多變幻,方程化歸整體算,

  數列求和比較難,錯位相消巧轉換。

  取長補短高斯法,裂項求和公式算。

  歸納思想非常好,編個程序好思考:

  一算二看三聯(lián)想,猜測證明不可少。

  還有數學歸納法,證明步驟程序化:

  首先驗證再假定,從 K向著K加1,

  推論過程須詳盡,歸納原理來肯定。

  復數

  虛數單位i一出,數集擴大到復數。

  一個復數一對數,橫縱坐標實虛部。

  對應復平面上點,原點與它連成箭。

  箭桿與X軸正向,所成便是輻角度。

  箭桿的長即是模,常將數形來結合。

  代數幾何三角式,相互轉化試一試。

  代數運算的實質,有i多項式運算。

  i的正整數次慕,四個數值周期現(xiàn)。

  一些重要的結論,熟記巧用得結果。

  虛實互化本領大,復數相等來轉化。

  利用方程思想解,注意整體代換術。

  幾何運算圖上看,加法平行四邊形,

  減法三角法則判;乘法除法的運算,

  逆向順向做旋轉,伸縮全年模長短。

  三角形式的運算,須將輻角和模辨。

  利用棣莫弗公式,乘方開方極方便。

  輻角運算很奇特,和差是由積商得。

  四條性質離不得,相等和模與共軛,

  兩個不會為實數,比較大小要不得。

  復數實數很密切,須注意本質區(qū)別。

  排列、組合、二項式定理

  加法乘法兩原理,貫穿始終的法則。

  與序無關是組合,要求有序是排列。

  兩個公式兩性質,兩種思想和方法。

  歸納出排列組合,應用問題須轉化。

  排列組合在一起,先選后排是常理。

  特殊元素和位置,首先注意多考慮。

  不重不漏多思考,捆綁插空是技巧。

  排列組合恒等式,定義證明建模試。

  關于二項式定理,中國楊輝三角形。

  兩條性質兩公式,函數賦值變換式。

  概率與統(tǒng)計

  概率統(tǒng)計同根生,隨機發(fā)生等可能;

  互斥事件一枝秀,相互獨立同時爭。

  樣本總體抽樣審,獨立重復二項分;

  隨機變量分布列,期望方差論偽真。

  立體幾何

  點線面三位一體,柱錐臺球為代表。

  距離都從點出發(fā),角度皆為線線成。

  垂直平行是重點,證明須弄清概念。

  線線線面和面面、三對之間循環(huán)現(xiàn)。

  方程思想整體求,化歸意識動割補。

  計算之前須證明,畫好移出的圖形。

  立體幾何輔助線,常用垂線和平面。

  射影概念很重要,對于解題最關鍵。

  異面直線二面角,體積射影公式活。

  公理性質三垂線,解決問題一大片。

  平面解析幾何

  有向線段直線圓,橢圓雙曲拋物線,

  參數方程極坐標,數形結合稱典范。

  笛卡爾的觀點對,點和有序實數對,

  兩者一 一來對應,開創(chuàng)幾何新途徑。

  兩種思想相輝映,化歸思想打前陣;

  都說待定系數法,實為方程組思想。

  三種類型集大成,畫出曲線求方程,

  給了方程作曲線,曲線位置關系判。

  四件工具是法寶,坐標思想參數好;

  平面幾何不能丟,旋轉變換復數求。

  解析幾何是幾何,得意忘形學不活。

  圖形直觀數入微,數學本是數形學。

[標簽:高考報考 高考復習]

分享:

高考院校庫(挑大學·選專業(yè),一步到位!)

高考院校庫(挑大學·選專業(yè),一步到位。

高校分數線

專業(yè)分數線

  • 歡迎掃描二維碼
    關注高考網微信
    ID:gaokao_com

  • 👇掃描免費領
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關注高考網官方服務號