二模分析:2011年高三二模數(shù)學理科試卷整體分析
2011-05-13 09:38:38高考研究中心文章作者:鄧楊
首先看一下本次二?荚嚫鲄^(qū)試題的知識點分布和分值情況:
分值 |
||||
海淀 | 西城 | 東城 | 朝陽 | |
復數(shù) | 5 | 5 | 5 | 5 |
集合和簡易邏輯 | 5 | 23 | 5 | 24 |
函數(shù) | 10 | 5 | 5 | |
數(shù)列 | 18 | 10 | 24 | 5 |
統(tǒng)計 | 5 | 0 | 5 | |
不等式和線性規(guī)劃 | 5 | 5 | 5 | |
算法 | 5 | |||
排列組合和二項式定理 | 5 | 5 | 5 | 5 |
三角函數(shù),解三角形和平面向量 | 13 | 23 | 23 | 18 |
概率和隨機變量 | 13 | 13 | 13 | 23 |
導數(shù)和定積分 | 14 | 14 | 13 | 18 |
立體幾何 | 24 | 18 | 19 | 23 |
解析幾何 | 18 | 19 | 18 | 19 |
幾何證明選講 | 5 | 5 | 5 | 5 |
參數(shù)方程和極坐標 | 5 | 5 | 5 | 5 |
從表中可以簡單看出,朝陽區(qū)和東城區(qū)對于試卷整體結(jié)構(gòu)的把握尚有一定問題,比如朝陽區(qū)在這張試卷當中側(cè)重了概率,隨機變量和定積分這些在高考中并不會經(jīng)常出現(xiàn)的問題,此外缺乏一些必要的知識點,目前的北京市高考側(cè)重于各知識點相對平均出現(xiàn),不會出現(xiàn)特別多的偏差。海淀和西城的試卷相對比較"規(guī)矩",更容易體現(xiàn)高考的能力。當然,我們暫且規(guī)避掉東城區(qū)教研員因考慮不周而出的那道錯誤題目。
各區(qū)的8,14,20這三道創(chuàng)新題也能體現(xiàn)命題者的水平,整體而言,目前的20題各區(qū)都偏向于簡單的競賽題下放,側(cè)重數(shù)學語言時多繁冗,不能簡單表達概念,高考的題目一般是在數(shù)學概念下自然延伸出一些高等數(shù)學的思想,這些和數(shù)學競賽的路子并不十分一致。所以對于高考的壓軸題并沒有太大的參照價值。
那么同學們應該怎樣看待二模最后的分數(shù)呢?
1.多次測試,準確評估
一模和二模都有很多張試卷,同學們應該盡可能利用這些試卷進行多次測試,不僅要做試卷,而且要模擬環(huán)境,這樣得到的結(jié)果才盡可能準確。比較方便志愿的填報。
2.相信失誤是一定存在的
有同學每次考試考完都扼腕嘆息,覺得這次有多少不該錯的題目,其實每個人做卷子,基本都不可能完全沒有失誤,所以失誤是正常的,應該分析自己失誤有沒有增多,有沒有一些共性的失誤是可以避免的,而不是一味責怪自己。
3.定好目標,該放棄的要放棄
數(shù)學考試在考場上的時間還是很緊迫的,到了二模結(jié)束后,不要過于指望成績能有大的飛躍,而應該認真定制好目標,壓軸題該放棄就放棄,不要可惜,拿好每一分應該得到的才是正經(jīng)。
4.熟練常規(guī)方法
高考的題目,尤其是解答題,大多數(shù)都存在常規(guī)的規(guī)范的解題步驟,要熟練掌握,以一法破萬法。
5.注意規(guī)范答題
仔細閱讀各區(qū)的詳細評分標準,注意在一些特定地方的得分點,比如函數(shù)的定義域,比如概率問題的設(shè)等,這些地方不必要的丟分是非?上У。
也不嘮叨多少,這么些東西,希望對大家最后四周的沖刺能夠起到幫助。
更多分析: